Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731325

ABSTRACT

Two experiments were conducted to investigate the effects of isobutyramide (IBA) and slow-release urea (SRU) as substitutes for soybean meal (SBM) in the finishing diet of beef cattle. The completely randomized design in vitro experiment with five treatments, i.e., control, 0.9% SRU group, 0.6% SRU + 0.3% IBA group (SRU-I), 0.3% SRU + 0.6% IBA group (IBA-S), 0.9% IBA group was conducted. The results showed that the IBA-S and IBA increased (p ≤ 0.05) substrate disappearance of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), total gas, and total volatile fatty acids (TVFA). The SRU group had the highest (p < 0.01) crude protein disappearance and ammonia nitrogen concentration, but the IBA contrarily decreased (p < 0.01) them compared with the control. Inclusion of IBA increased isobutyrate concentrations (p = 0.01) with the highest value for the IBA group. Then, an 84-day replicate 4 × 4 Latin square design with 8 Angus steers and four treatments, i.e., control, SRU, SRU-I, IBA-S was performed. The results showed that the treatments did not affect DM intake (p > 0.05) but tended (p = 0.09) to increase average daily gain. The inclusion of IBA increased (p < 0.05) the apparent digestibility of DM, organic matter, NDF, ADF, TVFA, and microbial crude protein with the highest values for the IBA-S group. The IBA-contained groups also increased (p ≤ 0.01) isobutyrate concentration, activities of carboxymethyl cellulase and xylanase, and the relative abundance of Butyrivibrio fibrisolvens with the highest values for the IBA-S group. The SRU had no effect on animal growth and nutrient apparent digestibility. In conclusion, IBA was developed as a new substitute for SBM in the finishing diet of beef cattle, and the optimal strategy was the isonitrogenous substitution of SBM with 0.3% SRU and 0.6% IBA of the diet.

2.
Cells ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38534401

ABSTRACT

Wool is produced and controlled by hair follicles (HFs). However, little is known about the mechanisms involved in HF development and regulation. Sheep dermal fibroblasts (SDFs) play a key role in the initial stage of HF development. Analyzing the molecular mechanism that regulates early HF development in superfine wool sheep is of great importance for better understanding the HF morphogenesis process and for the breeding of fine wool sheep. Here, we show that two microRNAs (miRNAs) affect the development of HFs by targeting two genes that are expressed by SDFs. Meanwhile, the overexpression and inhibition of oar-miR-23b and oar-miR-133 in SDFs cells and cell proliferation, apoptosis, and migration were further detected using a CCK-8 assay, an Annexin V-FITC assay, a Transwell assay, and flow cytometry. We found that oar-miR-23b, oar-miR-133, and their cotarget genes TGFß2 and NOTCH1 were differentially expressed during the six stages of HF development in superfine wool sheep. Oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs and promoted the apoptosis of SDFs through TGFß2 and NOTCH1. oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs by jointly targeting TGFß2 and NOTCH1, thereby inhibiting the development of superfine wool HFs. Our research provides a molecular marker that can be used to guide the breeding of ultrafine wool sheep.


Subject(s)
Hair Follicle , MicroRNAs , Sheep/genetics , Animals , MicroRNAs/genetics , Fibroblasts , Biomarkers , Cell Proliferation
3.
Genes (Basel) ; 15(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38540412

ABSTRACT

DNA methylation (DNAm) is associated with the reproductive system. However, the genetic mechanism through which DNAm regulates gene expression and thus affects litter size in goats is unclear. Therefore, in the present work, genome-wide DNAm profiles of HP and LP Jining Grey goat ovary tissues were comprehensively analyzed via WGBS, and RNA-Seq data were combined to identify candidate genes associated with litter size traits in the Jining Grey goat. Finally, BSP and RT-qPCR were used to verify the sequencing results of the key genes. Notably, the DNMT genes were downregulated at the expression level in the HP group. Both groups exhibited comparable levels of methylation. A total of 976 differentially methylated regions (DMRs) (973 DMRs for CG and 3 DMRs for CHG) and 310 differentially methylated genes (DMGs) were identified in this study. Through integration of WGBS and RNA-Seq data, we identified 59 differentially methylated and differentially expressed genes (DEGs) and ultimately screened 8 key DMGs (9 DMRS) associated with litter size traits in Jining Grey goats (SERPINB2: chr24_62258801_62259000, NDRG4: chr18_27599201_27599400, CFAP43: chr26_27046601_27046800, LRP1B. chr2_79720201_79720400, EPHA6: chr1_40088601_40088800, TTC29: chr17_59385801_59386000, PDE11A: chr2_117418601_117418800 and PGF: chr10_ 16913801_16914000 and chr10_16916401_16916600). In summary, our research comprehensively analyzed the genome-wide DNAm profiles of HP and LP Jining Grey goat ovary tissues. The data findings suggest that DNAm in goat ovaries may play an important role in determining litter size.


Subject(s)
DNA Methylation , Goats , Pregnancy , Animals , Female , Litter Size/genetics , Goats/genetics , DNA Methylation/genetics , Genome , Ovary/metabolism
4.
J Adv Res ; 57: 1-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37137429

ABSTRACT

INTRODUCTION: Fine-wool sheep are the most common breed used by the wool industry worldwide. Fine-wool sheep have over a three-fold higher follicle density and a 50% smaller fiber diameter than coarse-wool sheep. OBJECTIVES: This study aims to clarify the underlying genetic basis for the denser and finer wool phenotype in fine-wool breeds. METHOD: Whole-genome sequences of 140 samples, Ovine HD630K SNP array data of 385 samples, including fine, semi-fine, and coarse wool sheep, as well as skin transcriptomes of nine samples were integrated for genomic selection signature analysis. RESULTS: Two loci at keratin 74 (KRT74) and ectodysplasin receptor (EDAR) were revealed. Fine-scale analysis in 250 fine/semi-fine and 198 coarse wool sheep narrowed this association to one C/A missense variant of KRT74 (OAR3:133,486,008, P = 1.02E-67) and one T/C SNP in the regulatory region upstream of EDAR (OAR3:61,927,840, P = 2.50E-43). Cellular over-expression and ovine skin section staining assays confirmed that C-KRT74 activated the KRT74 protein and specifically enlarged cell size at the Huxley's layer of the inner root sheath (P < 0.01). This structure enhancement shapes the growing hair shaft into the finer wool than the wild type. Luciferase assays validated that the C-to-T mutation upregulated EDAR mRNA expression via a newly created SOX2 binding site and potentially led to the formation of more hair placodes. CONCLUSIONS: Two functional mutations driving finer and denser wool production were characterized and offered new targets for genetic breeding during wool sheep selection. This study not only provides a theoretical basis for future selection of fine wool sheep breeds but also contributes to improving the value of wool commodities.


Subject(s)
Edar Receptor , Keratins, Type II , Mutation, Missense , Wool , Animals , Edar Receptor/genetics , Sheep/genetics , Keratins, Type II/genetics
5.
Genes (Basel) ; 14(6)2023 05 29.
Article in English | MEDLINE | ID: mdl-37372369

ABSTRACT

Mastitis causes serious economic losses in the dairy industry, but there are no effective treatments or preventive measures. In this study, the ZRANB3, PIAS1, ACTR3, LPCAT2, MGAT5, and SLC37A2 genes in Xinjiang brown cattle, which are associated with mastitis resistance, were identified using a GWAS. Pyrosequencing analysis showed that the promoter methylation levels of the FHIT and PIAS1 genes in the mastitis group were higher and lower, respectively, than those in the healthy group (65.97 ± 19.82% and 58.00 ± 23.52%). However, the methylation level of the PIAS1 gene promoter region in the mastitis group was lower than that in the healthy group (11.48 ± 4.12% and 12.17 ± 4.25%). Meanwhile, the methylation levels of CpG3, CpG5, CpG8, and CpG15 in the promoter region of the FHIT and PIAS1 genes in the mastitis group were significantly higher than those in the healthy group (p < 0.01), respectively. RT-qPCR showed that the expression levels of the FHIT and PIAS1 genes were significantly higher in the healthy group than those in the mastitis group (p < 0.01). Correlation analysis showed that the promoter methylation level of the FHIT gene was negatively correlated with its expression. Hence, increased methylation in the promoter of the FHIT gene reduces the mastitis resistance in Xinjiang brown cattle. Finally, this study provides a reference for the molecular-marker-assisted selection of mastitis resistance in dairy cattle.


Subject(s)
DNA Methylation , Mastitis , Female , Cattle , Animals , Humans , Promoter Regions, Genetic , Protein Processing, Post-Translational , Mastitis/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Protein Inhibitors of Activated STAT/genetics
6.
PeerJ ; 11: e15327, 2023.
Article in English | MEDLINE | ID: mdl-37250719

ABSTRACT

Hair/wool usually plays an important role in maintaining animal physiological activities, and the economic value of wool cannot be ignored. At present, people set higher demands on wool fineness. Hence, improving wool fineness is the concern of fine wool sheep breeding. Using RNA-Seq to screen the potential candidate genes that associate with wool fineness can provide theoretical references for fine-wool sheep breeding, and also provide us new ideas for further understand the molecular regulation mechanism of hair growth. In this study, we compared the expression pattern difference of genome-wide genes between the skin transcriptomes of Subo and Chinese Merinos. The results showed that, 16 candidate differentially expressed genes (DEGs) (Included: CACNA1S, GP5, LOC101102392, HSF5, SLITRK2, LOC101104661, CREB3L4, COL1A1, PTPRR, SFRP4, LOC443220, COL6A6, COL6A5, LAMA1, LOC114115342 and LOC101116863 genes) that may associate with wool fineness were screened, and these genes were located in signaling pathways that regulate hair follicle development, cycle or hair growth. It is worth noting that, among the 16 DEGs, COL1A1 gene has the highest expression level in Merino skins, and the fold change of LOC101116863 gene is the highest, and the structures of these two genes are both highly conserved in different species. In conclusion, we speculate that these two genes may play a key role in regulating wool fineness and respectively have similar and conserved functions in different species.


Subject(s)
Sheep, Domestic , Wool , Sheep/genetics , Animals , Sheep, Domestic/genetics , Gene Expression Profiling , Transcriptome/genetics
7.
BMC Genomics ; 23(1): 722, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273119

ABSTRACT

BACKGROUND: Merino sheep exhibit high wool production and excellent wool quality. The fleece of Merino sheep is predominantly composed of wool fibers grown from hair follicles (HFs). The HF is a complex biological system involved in a dynamic process governed by gene regulation, and gene expression is regulated by microRNAs (miRNAs). miRNA inhibits posttranscriptional gene expression by specifically binding to target messenger RNA (mRNA) and plays an important role in regulating gene expression, the cell cycle and biological development sequences. The purpose of this study was to examine mRNA and miRNA binding to identify key miRNAs and target genes related to HF development. This will provide new and important insights into fundamental mechanisms that regulate cellular activity and cell fate decisions within and outside of the skin. RESULTS: We analyzed miRNA data in skin tissues collected from 18 Merino sheep on four embryonic days (E65, E85, E105 and E135) and two postnatal days (D7 and D30) and identified 87 differentially expressed miRNAs (DE-miRNAs). These six stages were further divided into two longer developmental stages based on heatmap cluster analysis, and the results showed that DE-mRNAs in Stage A were closely related to HF morphogenesis. A coanalysis of Stage A DE-mRNAs and DE-miRNAs revealed that 9 DE-miRNAs and 17 DE-mRNAs presented targeting relationships in Stage A. We found that miR-23b and miR-133 could target and regulate ACVR1B and WNT10A. In dermal fibroblasts, the overexpression of miR-133 significantly reduced the mRNA and protein expression levels of ACVR1B. The overexpression of miR-23b significantly reduced the mRNA and protein expression levels of WNT10A. CONCLUSION: This study provides a new reference for understanding the molecular basis of HF development and lays a foundation for further improving sheep HF breeding. miRNAs and target genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine-wool sheep.


Subject(s)
Gene Expression Profiling , MicroRNAs , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling/methods , Hair Follicle , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation
8.
BMC Genomics ; 23(1): 527, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35864447

ABSTRACT

BACKGROUND: Cashmere goats are a heterogeneous hairy mammal. The fineness of cashmere can affect its economic value. Therefore, in this study, we used transcriptome sequencing techniques to analyze the gene expression profiles of the skin tissues of cashmere goats with different cashmere fineness. The selected candidate genes were functionally verified with the secondary hair follicle hair papillary cells of cashmere goats. RESULTS: We identified 479 DEGs, of which 238 mRNAs were up-regulated in the fine velvet group and 241 mRNA were down-regulated. Based on functional annotation and protein interaction network analysis, we found some genes that may affect the fineness of cashmere, including SOX18, SOX4, WNT5A, IGFBP4, KAP8, KRT36, and FA2H. Using qRT-PCR, Western blot, CCK-8 cell viability detection, EDU cell proliferation detection, and flow cytometry, we found that overexpression of the FA2H gene could promote the proliferation of secondary hair follicle DPCs in cashmere goats. At the same time, we proved that FA2H could regulate the expression levels of the FGF5 and BMP2 genes in DPCs. CONCLUSION: The results of this study provide a useful reference for the genetics and breeding of Jiangnan cashmere goats and goat genome annotation, and provide an experimental basis for improving cashmere quality of the cashmere goat.


Subject(s)
Goats , Transcriptome , Animals , Goats/genetics , Goats/metabolism , Hair , Hair Follicle/metabolism , RNA, Messenger/genetics
9.
BMC Genomics ; 23(1): 428, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35672687

ABSTRACT

BACKGROUND: Merino sheep are the most famous fine wool sheep in the world. They have high wool production and excellent wool quality and have attracted worldwide attention. The fleece of the Merino sheep is composed predominantly of wool fibers grown from secondary wool follicles. Therefore, it is necessary to study the development of hair follicles to understand the mechanism of wool production. The hair follicle is a complex biological system involved in a dynamic process governed by gene regulation. The hair follicle development process is very complex and poorly understood. The purpose of our research is to identify candidate genes related to hair follicle development, provide a theoretical molecular breeding basis for the cultivation of fine wool sheep, and provide a reference for the problems of hair loss and alopecia areata that affect human beings. RESULTS: We analyzed mRNAs data in skin tissues of 18 Merino sheep at four embryonic days (E65, E85, E105 and E135) and two postnatal days (P7 and P30). G1 to G6 represent hair follicles developmental at six stages (i.e. E65 to P30). We identified 7879 differentially expressed genes (DEGs) and 12623 novel DEGs, revealed different expression patterns of these DEGs at six stages of hair follicle development, and demonstrated their complex interactions. DEGs with stage-specific expression were significantly enriched in epidermal differentiation and development, hair follicle development and hair follicle morphogenesis and were enriched in many pathways related to hair follicle development. The key genes (LAMA5, WNT10A, KRT25, SOSTDC1, ZDHHC21, FZD1, BMP7, LRP4, TGFß2, TMEM79, SOX10, ITGB4, KRT14, ITGA6, and GLI2) affecting hair follicle morphogenesis were identified by network analysis. CONCLUSION: This study provides a new reference for the molecular basis of hair follicle development and lays a foundation for further improving sheep hair follicle breeding. Candidate genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine wool sheep. These results are a valuable resource for biological investigations of fleece evolution in animals.


Subject(s)
Gene Regulatory Networks , Hair Follicle , Animals , Hair , Sheep/genetics , Sheep, Domestic , Wool
10.
BMC Vet Res ; 18(1): 167, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524260

ABSTRACT

BACKGROUND: Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS: We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3ß, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/ß-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFß, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION: This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.


Subject(s)
RNA, Long Noncoding , Animals , Gene Expression Profiling/veterinary , Glycogen Synthase Kinase 3 beta , Goats/metabolism , Hair Follicle/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq/veterinary
11.
Front Genet ; 12: 735827, 2021.
Article in English | MEDLINE | ID: mdl-34659357

ABSTRACT

Hair follicle growth and development are a complex and long-term physiological process, which is regulated by a variety of physical factors and signal pathways. Increasing the understanding of the epigenetic regulation and function of candidate genes related to hair follicle development will help to better understand the molecular regulatory mechanisms of hair follicle development. In this study, the methylated DNA immunoprecipitation sequencing (MeDIP-seq) was used to obtain the genome-wide methylation map of the hair follicular development of Super Merino sheep in six stages (fetal skin tissue at 65d, 85d, 105d, 135d, 7d, and 30d after birth). Combined with the results of previous RNA-sequencing, 65 genes were screened out that were both differential methylation and differential expression, including EDN1, LAMC2, NR1D1, RORB, MyOZ3, and WNT2 gene. Differential methylation genes were enriched in Wnt, TNF, TGF-beta, and other signaling pathways related to hair follicle development. The bisulfite sequencing PCR results and MeDIP-seq were basically consistent, indicating that the sequencing results were accurate. As a key gene in the Wnt signaling pathway, both differential methylation and expression gene identified by MeDIP-seq and RNA-seq, further exploration of the function of WNT2 gene revealed that the DNA methylation of exon 5 (CpG11 site) promoted the expression of WNT2 gene. The overexpression vector of lentivirus pLEX-MCS-WNT2 was constructed, and WNT2 gene effectively promoted the proliferation of sheep skin fibroblasts. The results showed that WNT2 gene could promote the growth and development of skin and hair follicles. The results of this study will provide a theoretical basis for further research on sheep hair follicle development and gene regulation mechanisms.

12.
BMC Biol ; 19(1): 197, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34503498

ABSTRACT

BACKGROUND: Characterization of the molecular mechanisms underlying hair follicle development is of paramount importance in the genetic improvement of wool-related traits in sheep and skin-related traits in humans. The Merino is the most important breed of fine-wooled sheep in the world. In this study, we systematically investigated the complexity of sheep hair follicle development by integrating transcriptome and methylome datasets from Merino sheep skin. RESULTS: We analysed 72 sequence datasets, including DNA methylome and the whole transcriptome of four gene types, i.e. protein-coding genes (PCGs), lncRNAs, circRNAs, and miRNAs, across four embryonic days (E65, E85, E105, and E135) and two postnatal days (P7 and P30) from the skin tissue of 18 Merino sheep. We revealed distinct expression profiles of these four gene types across six hair follicle developmental stages, and demonstrated their complex interactions with DNA methylation. PCGs with stage-specific expression or regulated by stage-specific lncRNAs, circRNAs, and miRNAs were significantly enriched in epithelial differentiation and hair follicle morphogenesis. Regulatory network and gene co-expression analyses identified key transcripts controlling hair follicle development. We further predicted transcriptional factors (e.g. KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3) with stage-specific involvement in hair follicle morphogenesis. Through integrating these stage-specific genomic features with results from genome-wide association studies (GWAS) of five wool-related traits in 7135 Merino sheep, we detected developmental stages and genes that were relevant with wool-related traits in sheep. For instance, genes that were specifically upregulated at E105 were significantly associated with most of wool-related traits. A phenome-wide association study (PheWAS) demonstrated that candidate genes of wool-related traits (e.g. SPHK1, GHR, PPP1R27, CSRP2, EEF1A2, and PTPN1) in sheep were also significantly associated with dermatological, metabolic, and immune traits in humans. CONCLUSIONS: Our study provides novel insights into the molecular basis of hair follicle morphogenesis and will serve as a foundation to improve breeding for wool traits in sheep. It also indicates the importance of studying gene expression in the normal development of organs in understanding the genetic architecture of economically important traits in livestock. The datasets generated here are useful resources for functionally annotating the sheep genome, and for elucidating early skin development in mammals, including humans.


Subject(s)
Epigenome , MicroRNAs , RNA, Long Noncoding , Transcriptome , Wool , Animals , Genome-Wide Association Study , Hair Follicle , MicroRNAs/genetics , RNA, Circular , Sheep
13.
Genet Sel Evol ; 53(1): 56, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193030

ABSTRACT

BACKGROUND: Genetic improvement of wool and growth traits is a major goal in the sheep industry, but their underlying genetic architecture remains elusive. To improve our understanding of these mechanisms, we conducted a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW). RESULTS: Our dataset comprised 7135 individuals with phenotype data, among which 1217 had high-density (HD) genotype data (n = 372,534). The genotypes of 707 of these animals were imputed from the Illumina Ovine single nucleotide polymorphism (SNP) 54 BeadChip to the HD Array. The heritability of these traits ranged from 0.05 (CVFD) to 0.36 (MFD), and between-trait genetic correlations ranged from - 0.44 (CN vs. LW) to 0.77 (GFW vs. LW). By integrating the GWAS signals with RNA-seq data from 500 samples (representing 87 tissue types from 16 animals), we detected tissues that were relevant to each of the six traits, e.g. liver, muscle and the gastrointestinal (GI) tract were the most relevant tissues for LW, and leukocytes and macrophages were the most relevant cells for CN. For the six traits, 54 quantitative trait loci (QTL) were identified covering 81 candidate genes on 21 ovine autosomes. Multiple candidate genes showed strong tissue-specific expression, e.g. BNC1 (associated with MFD) and CHRNB1 (LW) were specifically expressed in skin and muscle, respectively. By conducting phenome-wide association studies (PheWAS) in humans, we found that orthologues of several of these candidate genes were significantly (FDR < 0.05) associated with similar traits in humans, e.g. BNC1 was significantly associated with MFD in sheep and with hair colour in humans, and CHRNB1 was significantly associated with LW in sheep and with body mass index in humans. CONCLUSIONS: Our findings provide novel insights into the biological and genetic mechanisms underlying wool and growth traits, and thus will contribute to the genetic improvement and gene mapping of complex traits in sheep.


Subject(s)
Body Weight/genetics , Polymorphism, Single Nucleotide , Sheep/genetics , Transcriptome , Wool Fiber/standards , Animals , Genome-Wide Association Study/methods , Leukocytes/metabolism , Liver/metabolism , Macrophages/metabolism , Muscle, Skeletal/metabolism , Quantitative Trait Loci , Quantitative Trait, Heritable , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Selective Breeding , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Reprod Domest Anim ; 56(9): 1209-1219, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34169586

ABSTRACT

The regional expression of epididymal genes provides a guarantee for sperm maturation. As a class of endogenous non-coding small RNAs, microRNAs (miRNAs) play an important role in spermatogenesis, maturation and fertilization. Currently, the regulatory role of miRNA in the epididymis is poorly understood. Here, transcriptome sequencing was used to analyse miRNA expression profiles in three regions of the epididymis of rams, including caput, corpus and cauda. The results showed that there were 13 known miRNAs between the caput and corpus controls, 29 between the caput and cauda and 22 differences between the corpus and cauda. Based on the analysis of miRNA target genes by GO and KEGG, a negative regulation network of miRNA-mRNA was constructed in which let-7, miR-541-5p, miR-133b and miR-150 may play an important regulatory role in the maturation regulation of ram epididymal sperm. This research provides a reference for studying the regulation mechanism of sperm maturation in male epididymis and improving semen quality and male reproductive performance.


Subject(s)
Epididymis/metabolism , MicroRNAs/metabolism , Sheep, Domestic/metabolism , Animals , Male , MicroRNAs/genetics , RNA, Messenger/metabolism , Sheep, Domestic/genetics , Spermatozoa/growth & development , Transcriptome
15.
PeerJ ; 8: e10217, 2020.
Article in English | MEDLINE | ID: mdl-33240606

ABSTRACT

Tibetan cashmere goats are famous for producing the finest, softest and lightest cashmere fiber in China. The growth and development of skin are closely related to fineness and are the key factors affecting the quality of cashmere. To investigate the specific role of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in regulating cashmere fineness of Tibetan Cashmere goats in the anagen phase, we conducted high-throughput RNA sequencing of fine-type and coarse-type skin tissues. We identified 2,059 lncRNA candidates (1,589 lncRNAs annotated, 470 lncRNAs novel), and 80 differentially expressed (DE) lncRNAs and their potential targets were predicted. We also identified 384 DE messenger RNAs (mRNAs) out of 29,119 mRNAs. Several key genes in KRT26, KRT28, KRT39, IFT88, JAK3, NOTCH2 and NOTCH3 and a series of lncRNAs, including ENSCHIT00000009853, MSTRG.16794.17, MSTRG.17532.2, were shown to be potentially important for regulating cashmere fineness. GO and KEGG enrichment analyses of DE mRNAs and DE lncRNAs targets significantly enriched in positive regulation of the canonical Wnt signaling pathway, regulation of protein processing and metabolism processes. The mRNA-mRNA and lncRNA-mRNA regulatory networks further revealed potential transcripts involved in cashmere fineness. We further validated the expression patterns of DE mRNAs and DE lncRNAs by quantitative real-time PCR (qRT-PCR), and the results were consistent with the sequencing data. This study will shed new light on selective cashmere goat breeding, and these lncRNAs and mRNAs that were found to be enriched in Capra hircus RNA database.

16.
Animals (Basel) ; 10(4)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231053

ABSTRACT

Genomic evaluations are a method for improving the accuracy of breeding value estimation. This study aimed to compare estimates of genetic parameters and the accuracy of breeding values for wool traits in Merino sheep between pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) using Bayesian inference. Data were collected from 28,391 yearlings of Chinese Merino sheep (classified in 1992-2018) at the Xinjiang Gonaisi Fine Wool Sheep-Breeding Farm, China. Subjectively-assessed wool traits, namely, spinning count (SC), crimp definition (CRIM), oil (OIL), and body size (BS), and objectively-measured traits, namely, fleece length (FL), greasy fleece weight (GFW), mean fiber diameter (MFD), crimp number (CN), and body weight pre-shearing (BWPS), were analyzed. The estimates of heritability for wool traits were low to moderate. The largest h2 values were observed for FL (0.277) and MFD (0.290) with ssGBLUP. The heritabilities estimated for wool traits with ssGBLUP were slightly higher than those obtained with PBLUP. The accuracies of breeding values were low to moderate, ranging from 0.362 to 0.573 for the whole population and from 0.318 to 0.676 for the genotyped subpopulation. The correlation between the estimated breeding values (EBVs) and genomic EBVs (GEBVs) ranged from 0.717 to 0.862 for the whole population, and the relative increase in accuracy when comparing EBVs with GEBVs ranged from 0.372% to 7.486% for these traits. However, in the genotyped population, the rank correlation between the estimates obtained with PBLUP and ssGBLUP was reduced to 0.525 to 0.769, with increases in average accuracy of 3.016% to 11.736% for the GEBVs in relation to the EBVs. Thus, genomic information could allow us to more accurately estimate the relationships between animals and improve estimates of heritability and the accuracy of breeding values by ssGBLUP.

17.
Sci Rep ; 9(1): 8501, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186438

ABSTRACT

Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.


Subject(s)
Gene Expression Regulation, Developmental , Genome , Hair Follicle/growth & development , Hair Follicle/metabolism , RNA, Long Noncoding/genetics , Sheep/growth & development , Sheep/genetics , Animals , Animals, Newborn , Cluster Analysis , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Molecular Sequence Annotation , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
18.
BMC Microbiol ; 19(1): 30, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30717674

ABSTRACT

BACKGROUND: Essential Oils (EO) are complex mixtures of plant secondary metabolites that have been proposed as promising feed additives for mitigating methane and ammonia emissions. We have previously demonstrated that Essential Oil-Cobalt (EOC) supplementation resulted in increased average daily gain and improved phenotypes (cashmere fiber traits, carcass weight, and meat quality) when cashmere goats received supplementation at approximately 2 mg/kg of body weight. However, the ruminal microbiological effects of EO remain poorly understood with regard to the extent to which ruminal populations can adapt to EO presence as feed ingredients. The effects of varying levels of EO require additional study. RESULTS: In this study, we conducted metagenomic analyses using ruminal fluid samples from three groups (addition of 0, 52, and 91 mg) to evaluate the influence of dietary EOC supplementation on goat rumen bacterial community dynamics. EOC addition resulted in changes of ruminal fermentation types and the EOC dose strongly impacted the stability of ruminal microbiota. The Bacteroides sp. and Succinivibrio sp. type bacterial community was positively associated with improved volatile fatty acid production when the diet was supplemented with EOC. CONCLUSIONS: A clear pattern was found that reflected rapid fermentative improvement in the rumen, subsequent to butyrate metabolism and EOC based feed additives may affect rumen microbes to further improve feed conversion. This observation indicates that EOC can be safely used to enhance animal productivity and to reduce ammonia and waste gas emissions, thus positively impacting the environment.


Subject(s)
Cobalt/administration & dosage , Dietary Supplements , Metagenomics , Microbiota/drug effects , Oils, Volatile/administration & dosage , Rumen/microbiology , Animal Feed/analysis , Animals , Digestion , Fatty Acids, Volatile/metabolism , Fermentation , Goats , Male , Methane/metabolism
19.
Asian-Australas J Anim Sci ; 31(6): 775-783, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29103286

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the genetic effects of six keratin (KRT) genes on the wool traits of 418 Chinese Merino (Xinjiang type) (CMXT) individuals. METHODS: To explore the effects and association of six KRT genes on sheep wool traits, The polymerase chain reaction-based single-strand conformation polymorphism (PCR-SSCP), DNA sequencing, and the gene pyramiding effect methods were used. RESULTS: We report 20 mutation sites (single-nucleotide polymorphisms) within the six KRT genes, in which twelve induced silent mutations; five induced missense mutations and resulted in Ile→Thr, Glu→Asp, Gly→Ala, Ala→Ser, Se→His; two were nonsense mutations and one was a same-sense mutation. Association analysis showed that two genotypes of the KRT31 gene were significantly associated with fiber diameter (p<0.05); three genotypes of the KRT36 gene were significantly associated with wool fineness score and fiber diameter (p<0.05), three genotypes of the KRT38 gene were significantly associated with the number of crimps (p< 0.05); and three genotypes of the KRT85 gene were significantly associated with wool crimps score, body size, and fiber diameter (p<0.05). Analysis of the gene pyramiding effect between the different genotypes of the gene loci KRT36, KRT38, and KRT85, each genotype in a gene locus was combined with all the genotypes of another two gene loci and formed the different three loci combinations, indicated a total of 26 types of possible combined genotypes in the analyzed population. Compared with the other combined genotypes, the combinations CC-GG-II, CC-HH-IJ, CC-HH-JJ, DD-HH-JJ, CC-GH-IJ, and CC-GH-JJ at gene loci KRT36, KRT38, and KRT85, respectively, had a greater effect on wool traits (p<0.05). CONCLUSION: Our results indicate that the mutation loci of KRT31, KRT36, KRT38, and KRT85 genes, as well as the combinations at gene loci KRT36, KRT38, and KRT85 in CMXT have significant effects on wool traits, suggesting that these genes are important candidate genes for wool traits, which will contribute to sheep breeding and provide a molecular basis for improved wool quality in sheep.

SELECTION OF CITATIONS
SEARCH DETAIL
...